The Crystal and Molecular Structure of Bis(thioacetamide)nickel(II) Thiocyanate

BY LUCIA CAPACCHI, GIOVANNA FAVA GASPARRI, MARIO NARDELLI AND GIANCARLO PELIZZI Istituto di Strutturistica Chimica, Università degli Studi, Parma, Italy

(Received 20 September 1967)

The crystal structure of bis(thioacetamide)nickel(II) thiocyanate, Ni[SC(CH₃)NH₂]₂(NCS)₂, has been studied by three-dimensional Fourier methods. The habit of the crystals is rhombohedral, yet the Bravais lattice is *P*. There are three formula units in the unit cell: $a = 9.463 \pm 0.009$, $c = 12.627 \pm 0.022$ Å, space group *P*₃₁21. Coordination around each Ni atom is octahedral and involves two sulphur atoms from two thioacetamide molecules (Ni–S, 2.45 ± 1 Å), two sulphur (Ni–S, 2.55 ± 1 Å) and two nitrogen atoms (Ni–N, 2.02 ± 1 Å) from four NCS groups which are in a bridging position. The nitrogen atoms are *trans* with respect to the plane of the sulphur atoms and the thioacetamide molecules lie on adjacent corners of the coordination polyhedron. The octahedra are linked in helical chains running along a 3₁ axis. The thioacetamide molecules are planar and tilted with respect to the coordination plane of the sulphur atoms. The structure is compared with those of the similar compounds bis(thiourea)Ni(II) and bis(ethylenethiourea)Ni(II) thiocyanates.

Introduction

In our programme of work on the determination of the crystal structures of metal-complex compounds of ligands containing sulphur as donor atom, results for Nitu₂(NCS)₂ [tu = thiourea, SC(NH₂)₂] (Nardelli, Fava Gasparri, Giraldi Battistini & Domiano, 1966) and Nietu₂(NCS)₂ [etu = ethylenethiourea = SC(NHCH₂)₂] (Nardelli, Fava Gasparri, Musatti & Manfredotti, 1966) have already been published. In the present paper

Table 1. Final atomic fractional coordinates ($\times 10^4$), thermal parameters ($\times 10$ Å²) with e.s.d.'s and ratios (e.s.d.)/(coordinate shift)

	x/a	у/b	z/c	B ₁₁	B_{22}	B ₃₃	B ₂₃	B ₁₃	B_{12}	r(x)	r(y)	r(z)
Ni	2211 ± 6	0	3333	39±9	45 ± 9	34 ± 1	-3 ± 4	-1 ± 4	24 ± 10	∞	_	_
S(1)	5000 ± 9	2308 ± 9	3257 ± 3	23 ± 6	38 ± 6	35 ± 0	-7 ± 3	1 ± 3	16 ± 7	∞	1	3
S(2)	2037 ± 10	1241 ± 12	6976 <u>+</u> 2	35 <u>+</u> 7	37 ± 7	23 ± 1	-5 ± 2	-3 ± 2	22 ± 8	10	∞	2
N(1)	2335 ± 38	339 ± 33	4916 ± 6	38 <u>+</u> 26	37 ± 25	27 ± 2	-5 ± 10	-3 ± 10	21 ± 30	6	16	∞
N(2)	5778 <u>+</u> 48	805 ± 53	1851 ± 13	44 ± 32	47 <u>+</u> 30	50 ± 3	-16 ± 12	-3 ± 12	20 ± 37	∞	13	13
C(1)	6243 ± 43	1970 ± 56	2453 ± 12	43 ± 34	38 ± 32	34 ± 3	-3 ± 13	-3 ± 13	25 <u>+</u> 39	22	8	∞
C(2)	2226 ± 34	757 <u>+</u> 45	5763 ± 16	25 ± 22	27 <u>+</u> 22	29 ± 1	-5 ± 10	-2 ± 10	13 ± 26	17	22	8
C(3)	7989 <u>+</u> 40	3276 ± 47	2395 ± 16	35 ± 28	36 ± 29	50 ± 1	0 ± 15	-6 ± 15	12 ± 35	4	47	16

Table 2. Atomic peak heights (e.Å⁻³), and curvatures (e.Å⁻⁵)

		Q	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	Aki	Anı	Ank
Ni	obs. calc.	53·1 52·1	451 447	398 398	518 518	-11 - 10	4 4	207 203
S (1)	obs. calc.	30·4 29·3	252 250	246 247	281 283	- 34 - 31	19 17	116 116
S(2)	obs. calc.	33·4 32·5	291 291	280 280	338 336	-6 - 4	-10 -9	157 155
N(1)	obs. calc.	9·7 9·3	54 54	66 66	118 117	-10 - 10	4 4	25 25
N(2)	obs. calc.	8∙8 8∙6	66 67	59 59	66 68	7 -6	6 6	35 35
C (1)	obs. calc.	8·3 8·0	64 63	51 50	69 68	0 1	4 4	29 29
C(2)	obs. calc.	9·9 9·4	90 90	84 84	64 63	6 6	7 7	45 45
C(3)	obs. calc.	8·1 7·9	60 61	52 54	54 55	$-1 \\ -2$	1 2	25 26
	e.s.d.	0.5	5	5	5	3	3	4

\$

the structure of the similar compound $Nitam_2(NCS)_2$ [tam=thioacetamide= $SC(CH_3)NH_2$] is described. The comparison of these three structures is interesting in terms of the influence of the nature of the ligands on the behaviour of the thiocyanate group in these compounds in which the oxidation state of the metal atom, the coordination around it and the number of thiocyanate groups are the same. On the other hand, it was evident, even from the preliminary crystal data alone, that these structures were quite different and it was not possible to guess the structural role of the ligands in them.

The thioacetamide complex is interesting also from a crystallographic point of view as the translation lattice is P while its habit is rhombohedral, so it is an exception to the Bravais–Donnay rule, as observed by Professor J. D. H. Donnay (private communication).

Table 3. Observed and calculated structure factors

A minus sign for F_0 means 'less than'

h	k 1	10F ₀	10Pc	α.	h	k 1	10F ₀	10Pc	α.	h	k 1	10P ₀	10Fc	α,	h	k 1	10F0	^{10F} c	α.	h	k 1	10F ₀	10Fc	α•	h k 1	10P0	10F ~ .	
0	03	1048	1376	0	7	0 2	183	172	120	3	1 15	27-	14	133	:	2 12	215	221	101	0	3 1	870	817	120	7 3 4	115	121 259	
õ	0 9	469	488	õ	7	04	96	90	60	4	1 1	450	386	318	;	2 14	155	165	206	õ	3 3	44 /	373	180	7 3 5	38-	93 249 25 337	
0	0 12	344	356	180	7	05	209	196	120	4	1 2	459	421	194	1	2 15	78 856	80 799	64 147	Ô	3 4	538	516	120	7 3 7	129	148 241	
1	0 0	500	571	ő	7	0 7	63-	19	59	4	1 4	342	305	348	2	2 1	587	593	6	ŏ	3 6	658	623	180	8 3 0	35-	40 218	
1	01	821 456	1087	240 300	777	0809	213 52-	210	120 180	4.	15	323 340	305	232 340	2	2 2	467	372 448	338 158	0	3 7	705	749	120	8 3 1	35-	66 72 157 113	
1	0 3	57-	28	180	7	0 10	44-	30	60	4.	1 7	289	283	342	2	2 4	290	237	320	ő	3 9	417	426	180	8 3 3	32-	46 154	
;	04	402	391 729	240 300	7	0 11	92 53	87 69	121	4	18	187 187	174	242	2	25	366	319 314	58 142	0	3 10	289 85	296 63	120	834	44	63 78	
1	0 6	298	289	0	8	0 0	146	134	0	4	1 10	160	159	340	5	2 7	159	133	307	ō	3 12	190	185	180	0 4 1	623	622 120	
i	0 é	451	445	300	Ŗ	0, 2	66-	37	121	4	1 12	146	157	358	2	5 8	266	256	35	0	3 13	241 94	244 78	60	042	301	94 60 320 0	
1	0 9	75-	11	180	8	0 3	171	177	0	4	1 13	102	104	17	2	2 10	127	104	234	•	3 15	29-	16	0	0 4 4	379	344 120	
1	0 11	255	235	300	ě	ŏ 5	173	150	120	5	1 0	243	243	51	2	2 12	221	223	120	i	3 2	590	627	- 19	0 4 6	428	426 0	
;	0 12	138 240	138	180	8	06	144 50-	144	239	5	1 1	165	134	217	2	2 13	59- 51	26 36	212	1	33	296	245	176	047	72	49 121	
1	C 14	52-	46	300	8	0 8	127	131	121	5	1 3	149	117	37	2	2 15	71	87	98	1	3 5	541	554	3	0 4 9	550	224 0	
i	0 16	83	100	240	8	0 10	28-	. 0	ŏ,	5	1 5	82	. 36	295	3	2 1	464	354 449	311	-	3 7	281	205	127	0 4 10	45	2 297 46 60	
2	0.0	667 129	497	180	9	00	. 95	98 222	240	5	1 6	102	92	51	3	2 2	322	279	358	1	38	323	321	35	0 4 12	209	207 0	
2	0 2	737	6 %6	300	9	0 2	83	96	120	5	i é	74-	2	135	3	2 4	488	451	328	i	3 10	79	44	170	0 4 14	75	85 60	
2	0 4	65-	321	239	9	03	151	158	240	5	1 9	ده 79	65 68	180	3	25	289 268	259 231	· 22 291	1	3 11 3 12	135	134	42 55	1 4 1	374 267	362 193 260 340	
2	05	159	86 11	300	9	05	43-	19	121	5.	1 11	137	128	298	3	27	471	462	342	1	3 13	99	91	118	1 4 3	90	75 121	
2	ŏ 7	72-	20	240	9	0 7	80	102	240	5	1 13	34-	.28	291	3	29	127	130	281	i	3 15	59	68	26	1 4 4	395	389 226 85 34	
2	8, 0 9	117	92 25	300 180	9	08	74	108	120	6	1 0	229	226	129	3	2 10	203	203	340	2	31	394	366	8	1 4 6	169	145 69	
2	0 10	171	166	60	10	0 1	91	87	239	6	1 2	59	29	25	3	2 12	115	112	294	2	3 3	140	120	308	1 4 8	153	156 66	
2	0 12	66-	.56	180	10	02	44 62	27 90	301	6	13	178	154	130	3	2 13	112 38-	118	18 39	2	34	448	397	333	1 4 9	129	135 167 255 238	
2	0 13	115	100	240	10	04	-51	44	240	6	1 5	143	89	46	4	20	411	375	278	2	3 6	166	143	244	1 4 11	61	50 44	
2	0 15	37-	1	0	ö	ĭí	288	252	300	6	1 7	126	137	244	4	2 2	136	125	244	2	3 8	230	206	92	1 4 12	167	170 257	
2	0 16	17- 864	48 790	240 180	0	1, 2	838	934 851	240	6	1 8	105	97	336	4	23	263	229	267	2	3 9	102	85	331	1 4 14	57	56 51	
3	0 1	157	131	60	Ó	14	385	273	300	6	1 10	103	111	279	4	2 5	120	117	227	2	3 11	191	193	97	2 4 2	184	155 158	
3	0 3	306	220	180	ő	1 6	288	232	240	6	1 12	56	82 70	228	4	2 6	236	353 204	242 327	2	3 12	62 70	55 84	168	2 4 3 2 4 4	78 102	37 ·58 100 237	
3	04	210	153	60 120	0	1 7	245	208	120	7	1 0	169	177	131	4	28	188	176	283	2	3 14	64	75	91	2 4 5	169	142 131	
š	õ é	287	256	0	ŏ	1 9	. 91	54	180	7	1 2	155	184	138	4	2 10	101	96	329	3	3 1	445	384	254	240247	139	130 217	
3	0708	86 308	67 266	60 120	0	1 10	208 368	188 376	120 240	7	1 3	213 151	234 160	145	4	2 11 2 12	80 193	80 216	234 247	3	32	358	324 196	255	248	135	115 132	
3	0 9	.340	304	0	0	1 12	72-	17	0	7	1 5.	216	238	100	4	2 13	91	99	342	3	3 4	367	336	250	2 4 10	78	52 152	
3	0 11	129	110	120	0	1 13	215	219	239	7	1 7	202	213 76	145	4 5	2 14	178	164	220 74	3	35	315 230	303 216	237 272	2 4 11 2 4 12	142	134 120 97 202	
3	0 12	165	154	219	0	1 15	42-	21	180	7	1,8	157	192	131	5	2 1	255	220	91	3	37	332	326	250	2 4 13	39	21 279	
3	0 14	135	124	120	1	1 0	766	612	56	7	1 10	93	112	17	5	2 3	84	63	54	3	3 9	116	111	224	3 4 0	45-	28 344	
4	0 15	77 807	90 784	0	;	1 1 1 2	634 328	485	294	7	1 11	118 90	193	120	5	24	175	160	139 261	3	3 10	102	95	263	341	243	218 171 236 109	
4	0 1	186	88	240	1	1 3	424	319	46	8	1 1	63-	58	58	5	2 6	113	81	123	3	3 12	1 39	156	218	3 4 3	47-	20 Ç	
4	0 3	798	756	0	÷	1 5	238	200	248	8	1 3	132	154	- 85	5	2 8	223	216	260	3	3 13	20-	30	252	344	142	71 165 125 146	
4	04	93 354	49 300	60 120	1	1 6	320	283	109	8 6	1 4	56 59	63 64	79 217	5	2 9	93 142	81 129	222	4	30	67-	28 156	344	346	45-	34 147	
4	0 6	820	834	211	1	1 8	276	254	246	8	1.6	.105	126	41	5	2 11	166	161	246	4	3 2	46-	11	149	3 4 8	127	117 149	
4	οŝ	108	85	120	÷	1 10	270	269	141	8	1 8	59	64	170	5	2 12	39	49	68	4	3 4	157	143	149	3 4 9 3 4 10	135	128 147	
4	0 9	515 70-	508 60	0 240	1	1 11	160 177	152	241 · 83	8	19	118	123	40	6	2021	460 248	490 237	126 123	4	35	74 214	43 202	154 214	3 4 11 3 4 12	126 85	143 114 89 169	
4	0 11	65-	17	119	:	1 13	171	174	187	9	1 1	45-	18	212	6	2 2	199	181	310	4	3 7	181	173	90	3 4 13	73	113 137	
4	0 13	48-	0	ŏ	1	1 15	69	62	106	9	1 3	104	140	45	6	2 4	149	148	149	4	3 9	184	178	193	4 4 1	45-	30 189	
5	0 14	73 300	80 217	300 0	1.	1 16	72 790	119 796	184 135	9 9	1.4	53 34-	39 33	196 277	6	2526	147 278	128 282	121	4	3 10 3 11	177 47	186 55	99 102	4 4 2 4 4 3	133 366	130 338 383 351	
5	0 1	608 518	578	240	5	1 1	463	425	298	9	1 6	74	113	40	6	27	61	43	113	4	3 12	165	174	198	4 4 4	145	122 133	
5	0 3	73-	23	0	2	1 3	151	42	335	õ	2 1	113	77	301	6	2 9	145	153	126	5	3 0	92	39	57	4 4 6	260	268 341.	
5	0 4	380	352	240 121	2	1 4	472	376 364	293 350	0	22	489 756	232 700	60 180	6	2 10	49 69	31 76	237	5	3 1	252 325	242 330	120	447	145 38-	124 115	
5	0 6	75-	36	230	2	1 6	324	276	95	0	24	319	262	120	6	2 12	81	108	128	5	3 3	138	122	286	4 4 9	111	136 356	
ś	0 8	73-	28	300	2	1 8	129	100	326	0	26	410	370	180	7	2 1	195	180	48	5	3 5	329	326	324	4 4 11	22-	19 322	
5	0 9	70- 169	26 182	180 240	2	1 9	257	229	33 266	0	27 28	289 504	262 504	120 240	7	22	156	155	352	5	36	82 217	86 217	358 118	4 4 12	34 41-	63 12 17 40	
5	0 11	220	202	300	2	1 11	82	75	40	ŏ	2 9	351	326	180	7	2 4	106	115	36	Ś	3 8	202	222	327	5 4 1	115	128 226	
5	0 12	92 52	88 94	240	2	1 12	165 175	152 133	.84 228	0	2 10 2 11	165 212	150 202	240	7	25	138	165 121	20 · 47	5.	39 310	75 125	57 126	282 97	542	116 : 86	106 314 82 265	
5	0 14	74	.95	300	2	1 14	85	71	176	0	2 12	176	169	180	7	2 7	84	83	15	5	3 11	88	106	322	5 4 4	131	140 236	
6	0 1	75	68	240	3	1 0	209	123	205	õ	2 14	164	172	240	7	5 9	81	76	349	6	3 0	62	60	337	5 4 6	100	93 313	
6	0 3	271	243 176	120 180	3	1 1	1029	1034	343 122	0	2 15 2 16	67 74	41	180 120	7 8	2.10	81 80	101	333 264	6	3 1	179	180	53 338	547 54 R	102 71	122 215	
6	0 4	102	99	59	3	1 3	333	261	198	1	2 0	848	796	135	8	2 1	57-	35	235	6	3 3	68	33	0	5 4 9	27-	14 47	
6	0 6	88 242	223	180	3	1 5	-404	626 345	117	1	2 2	679	626	34 296	8	2 3	53-	41	147	6	3 4 3 5	183	189	92 344	5 4 10 6 4 0	145	164 253	
6	07	71- 67-	43	59	3	1 6	66 608	59 591	51 343	1	23	208	194	164	8 8	2 4	50- 46-	20 36	234	6	36	R4 47-	103	354	641	70	65 330 59 263	
6	0 · 9	120	97	180	3	1 8	346	307	125		2 5	487	433	254	8	2 6	68	69	269	6	3 8	85	93	333	6 4 3	108	124 275	
6	0 10	96 48-	91	59 292	3	1 9	148	128 197	355 340	1	2627	444 263	419 238	125	8 8	27	20- 20-	36 34	290 230	6	39 310	85 71	87 80	327 266	644	73 79	70 327 86.289	
6	0 12	63	49	180	3	1 11	158	147	135	:	2.8	233	202	225	9	2 0	57	68	343	?.	3 0	53-	35	208	646	86	105 297	
7	0 0	371	373	180	3	1 13	137	57 140	350	1	2 10	206	196	96	9	5 5	81	100	200	;	3 2	50-	68	286	6 4 8	20-	17 140	
7	01	144	134	60	3	1 14	94	103	190	1	2 11	212	215	227	9	23	46	56	2	7	3 3	47-	33	234	649	50	58 340	

Table 3 (cont.)

h	k	1	10F ₀	10Fe	α.	h	ŀ	1	10F ₀	۱DF و	α•	h	k	1	1050	10Fc	α.	h	k	1	1000	^{10F} c	α*	h	k 1	10F0	۱0F _C	α•	h	k	1	10Fo	10F _C	α.
7	4	0	18	۶٩	190	2	5	•	116	105	49	6	5	-1	175	203	265	3	6	3	93	65	254	1	7 7	84	91	72	1	۶	•	60-	56	50
7	4	1	27-	16	209	2	5	10	123	176	214	6	ś	5	95	68	244	í	6	á	102	206	38	1	7 8	6.6	49	4		Å	Ā	160	1 80	262
7	4	2	93	99	108	2	ś	11	61	41	34	6	ś	6	37	5.0	272	í	6	5	211	212	68	1	7 6	46-	- 70	13		ê	5	61	01	205
7	4	3	52	44	232	2	5	12	44	28	120	с	6	1	70	95	120	ž	6	6	60	28	240	1	7 10	46	50	127	÷	Ř	é	49-	16	170
7	4	4	49	65	311	2	Ś	13	55	66	223	с	6	2	182	169	240	3	6	7	183	191	41	1	7 11	72	97	312	i	à	7	104	126	271
7	4	5	52	73	129	3	5	1	180	176	339	0	6	2	50-	11	0	3	6	8	124	119	40	2	7 1	227	248	9		Ā	è.	86	0.5	- í é
7	4	6	15-	43	215		5	2	360	35P	127	6	€	4	51-	8	300	3	6	9	31-	15	238	2	7 2	161	152	46	1	8	å	40	62	211
0	5	1	60	47	120	j	5	3	92	58	138	0	5	5	298	295	240	3	6	10	84	101	32	2	7 -	70-	20	154	2	ř	í	57-	36	137
0	5	2	584	590	240	3	5	4	164	170	24	с	6	6	97	85	0	4	6	1	84	102	1	2	7 4	105	125	7	2	Ř	2	77	61	e
0	5	3	77	77	0	3	5	5	259	26 ?	126	C C	6	7	91	100	300	4	6	2	45-	17	54	2	7 5	161	171	44	2	8	3	134	168	219
0	5	4	355	314	120	3	5	6	86	60	125	0	6	e	172	170	240	4	6	3	84	89	228	2	7 6	59-	50	9.6	2	ē	Ã.	50-	20	87
0	5	5	277	258	240	3	5	7	124	112	63	0	6	9	121	123	0	4	6	4	68	82	56	2	7 7	121	130	0	2	8	5	83	90	7
0	5	6	145	149	0	3	- 5	8	108	101	150	0	6	10	45-	25	301	4	6	5	38-	20	60	2	78	112	118	12	2	8	6	143	177	237
0	5	7	125	112	120	3	5	9	70	62	153	c	6	11	149	178	240	4	6	6	104	114	248	2	7 9	48	48	238	2	8	7	33-	26	67
0	5	8	199	219	239	3	- 5	10	120	128	73	0	6	12	91	89	0	4	6	7	57	44	320	2	7 10	26-	62	335	2	8	ė	20-	62	12
0	5	9	200	182	0	3	5	11	78	86	115	0	6	13	118	133	300	4	5	8	25-	3	33	3	7 1	53-	19	270	3	8	1	112	188	125
0	5 1	0	60-	7	294	3	5	12	60	71	158	1	6	0	238	226	129	4	6	9	16-	27	239	3	7 2	61	90	264	3	8	2	41	66	22
0	5 1	1	193	204	240	4	5	0	63-	17	40	1	6	1	149	125	313	5	6	0	77	69	254	3	7 1	70	91	202	3	8	3	38	46	183
0	51	2	179	169	0	4	- 5	1	120	127	2	1	۴	2	386	387	208	5	6	1	35-	18	304	3	7 4	47-	43	227	3	8	4	94	135	117
0	51	3	137	142	300	4	5	2	118	126	240	1	۴.	2	216	223	108	5	6	2	161	199	233	3	7 5	44-	2	225	3	8	5	52	88	53
0	51	4	47	48	240	4	- 5	3	95	85	274	1	5	4	94	86	329	5	6	3	53	38	214	3	7 6	103	134	213	0	9	1	53-	4	117
1	5	1	247	236	195	4	5	4	123	123	96	1	6	5	336	3.35	213	5	6	4	44	39	296	3	7 7	32-	26	270	0	9	2	139	140	240
1	5	2	242	226	143	4	5	- 5	137	144	259	1	6	6	260	265	72	5	6	5	115	133	222	3	78	26-	72	296	0	9	3	73	42	0
1	5	3	349	347	77	4	5	6	92	87	335	1	6	7	80	72	105	5	6	6	22-	18	212	3	7 9	90	71	284	0	9	4	47-	27	299
1	5	4	257	255	160	4	5	7	1 39	137	83	1	6	8	258	280	224	0	7	1	103	76	120	4	7 1	70	79	99	0	9	5	89	125	240
1	5	5	81	61	167	4	5	8	66	78	251	1	6	9	110	99	33	с	7	2	73-	7	56	4	7 2	27-	46	113	0	9	6	70	52	0
1	2	6	317	336	41	4	- 5	9	64	64	63	1	6	10	40-	29	286	c	7	3	133	99	180	4	7 1	70	119	177	0	9	7	60	56	300
1	2	7	237	233	213	4	5	10	116	142	103	1	6	11	161	178	243	0	7	4	.114	145	121	4	7 4	63	106	94	0	9	8	31	57	239
1	2	8	194	194	162	5	5	0	101	62	284	1	6	12	60	50	56	0	7	5	73	44	240	4	7 5	47	72	93	1	9	1	68	49	250
1	2.	9	212	208	41	5	5	1	105	101	317	2	6	1	53-	41	341	0	• 7	6	93	80	180	4	76	70	105	170	1	9	2	59	55	352
1	2 2	0	150	156	239	5	5	2	55	53	346	2	6	2	222	216	118	0	7	7	63-	30	120	0	ε 1	66-	55	301	1	9	3	72	91	356
1	? ?	1	50-	46	110	5	- 5	3	60	45	316	5	5	3	358	395	111	0	7	8	60-	14	241	0	8 2	66-	62	60	1	9	4	86	92	247
1	2 1	2	108	115	49	2	2	4	68	78	316	5	6	4	80	82	152	0	7	9	64	66	180	0	8 3	193	197	0	1	9	5	62	80	350
1	21	3	123	133	257		5	5	63	59	352	2	6	5	106	99	117	0	7	10	44-	11	121	0	8 4	167	166	300	1	9	6	40	61	357
÷.	2		420	421	234	2	2	6	71	68	352	5	6	6	301	323	119	0	7	11	45	42	240	0	8 5	77	72	240	2	9	1	116	144	218
*	2	~	1/9	102	143	2	2	7	57	54	595	2	5	7	54	81	105	0	7	12	22-	13	150	0	8 6	157	192	0	5	9	2	33-	14	99
ś	2	2	<259 200	553	52	2	2	8	41	37	46	2	6	8	44-	45	135	1	7	1	190	192	110	0	8 7	77	96	300	5	9	3	36	53	310
5	2	2	300	2/5	225	2	2	9	44	68	45	2	6	.9	181	193	153	1	7	2	131	117	47	0	8 8	62	73	60	0	10	1	69	79	301
1	2	2	251	219	145	6	2	0	56	69	254	2	5	10	51	52	158	1	7	3	69	87	150	0	8 9	104	109	0	0	10	5	79	81	240
5	2		< 34 000	217	40	, ș	2	1	118	190	262	2	6	12	64	58	359	1	7	4	70-	21	106	0	8 10	28-	44	300	0	10	3	78	78	S
ŝ	2	2	220	225	230	6	5	2	40-	32	192	3	6	1	176	169	4	1	7	2	68	55	32	1	8 1	99	113	242	с	10	4	26-	25	299
۷	>	8	1/8	174	161	6	- 5	3	51	68	277	3	6	2	140	159	54	1	7	6	97	92	122	1	8 2	68	58	357						

Experimental

The crystals of Nitam₂(NCS)₂ used in the present work were those already described by Nardelli & Chierici (1958). Cell constants, remeasured and refined by a least-squares procedure on powder diffractometer data (Cu $K\alpha$, $\lambda = 1.5418$ Å), are as follows:

Ni[SC(CH₃)NH₂]₂(NCS)₂, $M = 325 \cdot 1$ $a = 9 \cdot 463 \pm 0.009$, $c = 12 \cdot 627 \pm 0.022$ Å, V = 979 Å³, Z = 3, $D_x = 1 \cdot 66$, $D_m = 1 \cdot 63$ g.cm⁻³ $\mu = 78 \cdot 7$ cm⁻¹ (Cu K α) Space groups: $P3_121$ or $P3_221$.

Three-dimensional intensity data were recorded in the usual way on multiple-film Weissenberg photographs, using integration and equi-inclination techniques with Cu $K\alpha$ radiation, and the intensities were measured photometrically. Layers h0.1 to h6.1 were recorded about the *b* axis giving all the possible reflexions (857 independent ones) which lie within the limiting sphere for Cu $K\alpha$; of these, 127 were too weak to be estimated.

To correct for absorption the sample was treated as a sphere of mean radius 0.047 cm. The structure factors were derived by the usual formulae, the absolute scale being established by Wilson's method using the h0.1 reflexions; the remaining layers were put on the same absolute scale by comparison of the symmetry related reflexions which occur in both the *n* and the zero layer.

Structure analysis and refinement

The centre of mass of the three molecules in the unit cell must be found in one of the two positions, (a) or

(b), of three points lying on a binary axis in the two possible space-groups, $P3_121$ and $P3_221$. As these groups are enantiomorphous it is possible to select either: the space-group $P3_121$ was chosen. The coordinates of Ni, S(1) and S(2) were first found from a three-dimensional Patterson synthesis. The next step was a three-dimensional Fourier synthesis calculated with the use of the phases of the contributions of these atoms to the structure factors (R = 36%); this synthesis showed all the other atoms to be well resolved. Two more three-dimensional Fourier calculations, followed by an $F_0 - F_{Ni}$ synthesis, improved the residual error index to 22%. The refinement was then carried out by means of seven cycles of Booth's differential synthesis, two calculated with isotropic and five with anisotropic thermal parameters. The final agreement indices were: R = 10.8%, R' = 12.9% (R, for observed reflexions only; R' assuming $F_o = \frac{1}{2}F_{\min}$ when $F_c > F_{\min}$ for unobserved reflexions, multiplicities not considered).

At the end of this refinement, the ratios $r(x) = |\sigma(x)/\varepsilon(x)|$ between the e.s.d.'s and the shifts of the coordinates were as shown in Table 1, in which the final parameters with their e.s.d.'s (Cruickshank, 1949, 1956) are also quoted. The B_{tj} 's were determined by the method of Nardelli & Fava (1960) using the second derivatives of the electron density in the differential synthesis.* Observed and calculated peak heights and curvatures, with the e.s.d.'s of electron-density and second derivatives, are reported in Table 2. The F_c

^{*} The method used to determine the matrix elements of tensor **B** is based on the electron density distribution; therefore the symmetry relations on the B_{ij} values must derive directly with no imposed restriction. This is observed for Ni, which is in the (a) position of the $P_{3_1}2_1$ space group: in fact the relations $B_{22}=2B_{12}$ and $B_{23}=2B_{13}$ required by the space group symmetry are well verified in the limits of the e.s.d.'s.

values reported in Table 3 are calculated with the final parameters of Table 1 using the scattering factors of Thomas & Umeda (1957) for Ni²⁺, of Dawson (1960) for S and of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for N and C.

The standard deviations, quoted in the next section, are calculated from the formulae of Ahmed & Cruickshank (1953) for bond lengths and of Darlow (1960) for angles, the effects of errors in cell parameters being accounted for following Darlow & Cochran (1961).

Discussion

The coordination around each nickel atom is octahedral as it coordinates to two S(1) atoms from two thioacetamide molecules and to two S(2) and two N(2)atoms from four different NCS groups. The structure is polymeric as these groups are in a bridging position and the coordination octahedra form a helical chain running around a 3_1 axis as shown in Fig.1. The two thioacetamide molecules are in a *cis* position, their sulphur atoms being on adjacent corners of the coordination octahedron.

It is interesting to compare this structure with those of the similar compounds $Nietu_2(NCS)_2$ (Nardelli, Fava Gasparri, Musatti & Manfredotti, 1966) and $Nitu_2(NCS)_2$ (Nardelli, Fava Gasparri, Giraldi Battistini & Domiano, 1966) complexes (Fig.2). In all these three compounds coordination around Ni is octahedral and the crystal structures are polymeric in nature with chains of coordination polyhedra; however, while sulphur bridges are present in the thiourea complex, bridging is due to the thiocyanate groups in the other compounds. The ligands are in a different

Fig. 1. Nitam₂(NCS)₂: Clinographic projection of a chain of coordination polyhedra.

Fig. 2. Chains of coordination octahedra in the three similar compounds. (a) Nitu₂(NCS)₂, (b) Nietu₂(NCS)₂, (c) Nitam₂(NCS)₂.

situation in the three complexes: in $Nitu_2(NCS)_2$ the thiocyanate is terminal and bonded through the nitrogen atom and each sulphur atom of thiourea is bonded to two adjacent metal atoms, while in $Nietu_2(NCS)_2$ the thiocyanate group is bridging and the two ethylene-thiourea sulphur atoms, which are monocoordinated, are in a *trans* position.

It is remarkable to observe that in all these compounds coordination always involves four sulphur and two nitrogen atoms, the last being *trans* with respect to the sulphur plane, so that the octahedra are deformed to form flattened bipyramids which are nearly tetragonal. Thus this polyhedron seems to be the most stable arrangement for the Ni^{2+} ion with these ligands and is realized in different ways, with different behaviour of the thiocyanate group. This behaviour is probably related to the different donor character of the ligands and to the packing interactions of the organic molecules.

Comparison of bond distances and angles in the coordination polyhedra of the three nickel thiocyanate complexes is shown in Table 4. The distances Ni-S for the two kinds of coordinated sulphur atom in the thioacetamide complex are significantly different $[t_o = (l_1 - l_2) \times (\sigma_1^2 + \sigma_2^2)^{-1/2} = 7 \cdot 1$, significance test of Cruickshank & Robertson, 1953], the shorter being

Table 4. Dona distances and digies in the coordination octaneard of The 2(1.00)2 complexe	Table 4.	Bond distances	and angles in	the coordination	octahedra oj	$f \operatorname{Ni} L_2(\operatorname{NCS})_2$	complexes
---	----------	----------------	---------------	------------------	--------------	---	-----------

•	· · ·		
Nitam ₂ (N	(CS) ₂ *	Nietu2(NCS)2†	Nitu ₂ (NCS) ₂ ‡
Ni-S(1)	2·446±10Å)	2·507 ± 8 Å	2·531 ± 6 Å
Ni-S(2)	2·546 ± 10 }	2.544 ± 14	2.564 ± 9
Ni-N(1)	2.020 ± 11	1.992 ± 23	1·992±7
N(1)-Ni-S(2 ⁱ)	$92.6 \pm 1.0^{\circ}$	$88.0 \pm 0.5^{\circ}$	82·4 + 0·3°
$N(1)-Ni-S(2^{11})$	85.5 ± 0.9 J	000100	
$S(1) - Ni - S(1^{111})$ $S(1) - Ni - S(2^{1})$	101.5 ± 0.3	81.4 ± 0.2	83.6 ± 0.1
S(1) -Ni-N(1) $S(1) -Ni-N(1^{iii})$	86.9 ± 0.9 94.7 + 0.9	87.3 ± 0.5	$88{\cdot}3\pm0{\cdot}3$
	_ · ·)		

[L = thioacetamide ((tam), ethylenethiourea	(etu), thiourea (tu)]
----------------------	-------------------------	-----------------------

* Present paper.

† Nardelli, Fava Gasparri, Musatti & Manfredotti (1966).

‡ Nardelli, Fava Gasparri, Giraldi Battistini & Domiano (1966).

Fig. 3. Nitam₂(NCS)₂: projection of the structure on a plane perpendicular to [001].

that of the thioacetamide sulphur which is more strongly bonded to the metal atom than the other sulphur ligand. The distance Ni–N is consistent with the sum of Pauling's covalent radii (2.09 Å) and with the data quoted in Table 4 of the paper on bis(2-thioimidazolidine)nickel(II) thiocyanate (Nardelli, Fava Gasparri, Musatti & Manfredotti, 1966).

Distances and angles in the thioacetamide molecule are compared with those for the uncoordinated molecule (Truter, 1960) in Table 5. From these values it appears that coordination does not significantly influence the dimensions of the molecule, which is planar; its least-squares plane is

$$0.1893X - 0.6519Y + 0.7343Z = 3.9141$$
.*

The thioacetamide molecule is tilted with respect to the plane of sulphur atoms surrounding the nickel atom, the dihedral angle being 132.0° (the values for the same angle in the thiourea and ethylenethiourea complexes are 100.2° and 107.1° respectively). This is a consequence of the lack of collinearity for the bonds Ni-S(1) and S(1)-C(1): the angle Ni-S(1)-C(1) being 113.2° (116.9° for the *tu* complex and 116.9° for the *etu* complex).

Table 5. Distances and angles in thioacetamide molecules

$Nitam_2(NCS)_2$	tam	
(Present study)	(Truter, 1960)	to
$S(1) - C(1) = 1.70 \pm 4$	1.713 ± 6	0.32
$C(1)-C(3) = 1.49 \pm 5$	1.494 ± 8	0.08
$C(1) - N(2) = 1 \cdot 22 \pm 6$	1.324 ± 8	1.72
$S(1) - C(1) - N(2) = 124.6 \pm 3.2^{\circ}$	$121.6 \pm 0.4^{\circ}$	0.93
$S(1) - C(1) - C(3) = 117 \cdot 2 \pm 3 \cdot 3$	120.7 ± 0.4	1.06
$N(2)-C(1)-C(3) = 117.8 \pm 3.3$	117.7 ± 0.5	0.03

Table 6. Distances and angles in the NCS group

Nietu ₂	(NCS)	$Nitu_2(NCS)_2$	Nitam ₂ (NCS) ₂
N-C	$1.16 \pm 3 \text{ Å}$	1·169 ± 14 Å	$1.16 \pm 3 \text{ Å}$
C-S	1.64 ± 2	1·635 ± 13	1.63 ± 2
Ni-N-C	162·1 ± 1·7°	$162 \cdot 2 \pm 1 \cdot 0^{\circ}$ $178 \cdot 0 \pm 1 \cdot 0$	$163 \cdot 1 \pm 3 \cdot 2^{\circ}$
Ni-S -C	100·7 ± 0·7		$99 \cdot 6 \pm 1 \cdot 5$
N -C-S	178·6 ± 1·2		$176 \cdot 8 \pm 3 \cdot 8$

The bond distances and angles concerning the NCS group are practically equal in the three nickel com-

* The X, Y, Z coordinates are in Å and refer to orthogonal axes. They can be obtained from those of Table 1 by using the matrix:

$\int a \sin \gamma$	0	0 \
$a\cos\gamma$	Ь	0
\ 0	0	c / .

plexes, as shown in Table 6, so that the discussion given for the NCS group in the *etu* complex (Nardelli, Fava Gasparri, Musatti & Manfredotti, 1966) applies also to the other two complexes. The lack of collinearity in the NCS group is not significant. The infrared behaviour of this group in these complexes is illustrated in the paper describing the crystal structure of the *etu* complex.

Packing is determined by the following $S \cdots N$ and $N \cdots N$ contacts:

 $S(2)-N(2^{iv}) = 3 \cdot 43 \pm 4 \text{ Å}$ $N(1)-N(2^{iii}) = 3 \cdot 18 \pm 6$ $S(1)-N(1^{iii}) = 3 \cdot 29 \pm 3$ i x, y, 1-z ii y-x, \bar{x} , $z-\frac{1}{3}$ iii. x-y, \bar{y} , $\frac{2}{3}-z$ iv y-x+1, 1-x, $\frac{2}{3}+z$

as shown in the projection of Fig. 3.

All the calculations were performed on the Olivetti Elea 6001/S computer of the Centro di Calcolo Elettronico della Università di Parma with the programs of Nardelli, Musatti, Domiano & Andreetti (1964, 1965). This work was done with the financial support of the Consiglio Nazionale delle Ricerche (Roma).

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 754.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DARLOW, S. F. & COCHRAN, W. (1961). Acta Cryst. 14, 1250.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- NARDELLI, M. & CHIERICI, I. (1958). Gazz. chim. ital. 88, 359.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.
- NARDELLI, M., FAVA GASPARRI, G., GIRALDI BATTISTINI, G. & DOMIANO, P. (1966). Acta Cryst. 20, 349.
- NARDELLI, M., FAVA GASPARRI, G., MUSATTI, A. & MAN-FREDOTTI, A. (1966). Acta Cryst. 21, 910.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1964). *Ric. Sci.* 34, II-A, 711.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1965). *Ric. Sci.* 35, II-A, 469, 477 & 807.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293. TRUTER, M. R. (1960). J. Chem. Soc. p. 997, 1007.